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Abstract

This paper presents an intelligent user interface agent architecture based on Bayesian

networks. Using a Bayesian network not only dynamically captures and models user

behavior, but it also dynamically captures and models uncertainty in the interface's

reasoning process. We present an approach that allows our intelligent interface agent

(IIA) to alter its own topology to better adapt itself to modeling a particular user. We

present several metrics that provide useful information concerning the performance of

our IIA. IIA's sound semantics and mathematical basis enhances its ability to make

correct, intelligent inferences as to the user's needs.

Keywords: intelligent user interface, Bayesian network, intelligent agent, generic expert

system, knowledge representation, reinforcement learning, cognitive reasoning
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1 Introduction

Intelligent user interface (IUI) research is primarily focused on human-computer interface

issues, especially with the abilities and usability of interfaces. However, intelligent interface

researchers have put little emphasis on improving the structures representing the intelligence

of these interfaces. In this paper, we are primarily concerned with presenting the utilization

of Bayesian networks in intelligent user interfaces.

GESIA (Generic Expert System Intelligent Assistant) [6] is an intelligent user interface

architecture conceived out of the development of a generic expert system. This expert

system, called PESKI (Probabilities, Expert Systems, Knowledge, and Inference) [11], is

a collection of expert system tools under one architecture that is designed to be totally

independent of any application domain, i.e., generic. The tools contained in PESKI include

an inference engine, a knowledge base (called a Bayesian knowledge base [1] or BKB), a

knowledge acquisition tool, a knowledge base veri�cation and validation tool, and a data

mining tool.

It is widely agreed that basing decisions on an accurate cognitive model of the user is

important for e�ective prediction of user intent and that the interface should be able to collect

and model information about false inferences [9, 12]. Collecting such data is cognitively and

computationally di�cult. DeWitt notes that not all naturalistic (i.e., observable) properties

play an interesting role in a user's causal model [3]. That is, only certain observable actions

and information in a user's \world" will have relevance to that user. Therefore, to e�ectively

and e�ciently capture user intent, our model should not attempt to model every possible

action the user may exhibit, but only those that are relevant, i.e., most likely to be exhibited.

Many research interfaces use rule-based intelligence [4]. Rule-based representations, like

those used in most intelligent user interfaces, fail in two key areas - representing uncertainty

and dynamic user modeling. The use of \probability modules" [13] is an ad hoc approach

to determining answer reliability, i.e., uncertainty. Furthermore, the addition and deletion

of rules to dynamically model a user is ad hoc. Therefore, knowledge representations that

can dynamically capture and model uncertainty in human-computer interaction can improve

the modeling of the user and user interface states in an intelligent user interface. One

knowledge representation that is ideal for representing uncertainty is a Bayesian Network

(BN). A Bayesian network is a mathematically correct and semantically sound model for

representing uncertainty that provides a means to show probabilistic relationships between

items [10].

This paper is organized as follows. In Section 2, we present the Bayesian network knowl-

edge representation utilized by our user interface intelligent agent called the Intelligent In-

terface Agent. In Section 3, we present our methodology for allowing the Bayesian networks

change dynamically as the user interacts with the system and provide several metrics for

determining the applicability of an approximation and intelligent agent's performance on

representing a user. Finally, we discuss future research and our conclusions in Section 4.
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2 GESIA Development

The goals of GESIA's development are threefold:

� To provide for user access to the many tools of the expert system using proven user

interface design theory and implementation methods.

� To maintain the domain independence of the expert system, or, in other words, ensure

the expert system can easily be transplanted from one application domain to another.

� To assist the user with managing the complexities of the generic expert system through

the use of intelligence or reasoning capability.

GESIA's IUI provides access to the generic expert system tools and applications. There

are three major layers of the architecture: the graphical layer, the intelligent interface agent

(IIA) layer, and the system layer.

The graphical layer of the IUI contains Motif/OSF standard interface widgets. Together,

these widgets form the visual part of the interaction between the user and the expert system

applications. The system layer provides the link between the IUI and the expert system

applications through a series of tool drivers, one for each expert system application tool.

The IIA layer is the most complex and important layer of the IUI. This layer controls the

communications and intelligence aspects of the interface and is composed of three sublayers:

the adaptation layer, the adaptive layer, and the communications layer. The adaptation

layer manages and tracks all adaptations the user makes to the IUI. The adaptive layer

communicates directly with the interface learning network gateway (explained in detail in

the next section) to perform interface initiated adaptations to the IUI based on perceived

user behavior. Finally, the communications layer controls the various modes of communica-

tion available to the interface such as structured text, graphical manipulation, and natural

language.

2.1 The GESIA Interface Learning Network

The GESIA Interface Learning Network (ILN) is the heart of the IIA layer. The Bayesian

network knowledge representation captures, stores, and models user and interface behavior.

The network is composed of two semantically di�erent nodes: interface learning nodes and

interface information nodes. The network is also composed of containers that store learned

user and user class behavior data and a network communications gateway.

2.1.1 Interface Learning Node

Semantically, the interface learning node represents behavior that the interface has collected

about a particular system user or class of users. This node is named according to the be-

havior collected, for example \User Prefers Knowledge Acquisition" or \User's Class Prefers

Knowledge Acquisition." Each node's probability is stored as a fraction. The denominator

of the fraction represents the number of learning occurrences that a�ect the node. The

numerator of the fraction represents the number of learning occurrences that add to the

truthfulness of the node (i.e., a higher probability).

After the node is instantiated, the interface learning network loads stored data about

the current system user into the interface learning node. Whenever the system user exhibits

behavior represented by the node, the interface will call the node's update method to record

the behavior. The updating is based on simple reinforcement learning.
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2.1.2 Interface Information Node

Semantically, the interface information node represents a possible user state. Each interface

information node is supported by two or more interface learning nodes and zero or more

interface information nodes. When an interface information node is instantiated, it receives

and stores access information to all its child nodes. The node sits \dormant" until the

interface queries it for its probability, in order to make inferences as to the user's future

state (i.e., action). When the node is queried, this node combines the probabilities of all the

supporting nodes to determine the probability that state is true using Bayes Theorem [10].

This value represents the probability that the node's state is true. This node is named after

the state it represents, for example, \User is Using Graphical Communication."

3 Dynamic Interface Learning Networks

The networks used and presented previously [5, 6] have been pedagogical examples. While

although they represent the concepts and advantages of using Bayesian networks as a knowl-

edge representation in intelligent user interfaces, they represent only a microcosm of the

entire system and the possible actions a user may perform while using the system. A simple

minded approach to creating an interface learning network to represent the user's actions

is to have a single node for each action possible in the system. This ILN could potentially

have thousands of interface information nodes and approximately as many interface learning

nodes. Surely, this would provide the most accurate representation of the system and the

possible actions a user could perform at any time. Creating a node for every possible action

in our system and allowing this node's dependencies (i.e., parent nodes) to be connected to

it allows us to represent our system exactly. However, there are two main problems with

this approach. First, since our user will rarely if ever exhibit certain actions, the probability

of certain nodes will be very small. When we combine our probabilities, these \irrelevant"

probabilities can have the e�ect of ignoring the relevant node's probability. In Dewitt's

terms, these actions are not \causally e�cacious". Secondly, it is well known that belief

propagation is NP-hard [2]. Therefore, we must �nd an approximation to our network that

models only relevent nodes and is a good tradeo� between computational complexity and

representation exactness. This implies a dynamic ILN structure, where we add and remove

relevant nodes in our ILN. How to determine what nodes are relevant can be di�cult.

3.1 Methodology

As mentioned previously, there are computational limits of modeling the entire user interface,

i.e., every possible action the user may perform, as an ILN. However, we take solace in the

fact that for any given user, that user will only display a subset of all possible actions during

a given session with the system. Yet, the subset of possible actions may be too large to use

as a basis of a complete interface learning network. Therefore, we must restrict our interface

learning network further.

There has been much research in the �eld of approximating Bayesian Networks [10, 7].

Current techniques revolve around stochastic simulation, Likelihood Weighting, and Logic

Sampling. Since a user will only exhibit a subset of all possible actions, we only allow a

total of the N most relevant nodes to be present at any time in our network. When a user

performs an action, this action is communicated via the ILN gateway to the IIA. This action

may or may not be represented in the ILN. If it is, we update the network and calculate

the new probabilities. If it is not, we modify the existing ILN topology. Currently, we add
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the new node, calculate the new probabilities, and then remove the least relevant node, i.e.,

lowest priority. In this way, we can view our ILN as a priority queue of user actions, where

the highest priority actions are most relevant.

3.2 Metrics

We have chosen a method for dynamically changing a user's ILN. We are concerned with

�nding the method to represent a particular user. Are the resulting ILNs truly representative

of our user? We de�ne several objective metrics (versus subjective usability comparisons)

that give us insight into the performance of our ILN.

Absolute thrashing is the result of an observable property (i.e., node) repeatedly entering

and leaving the relevancy set. We are concerned with adding a node to the interface learning

network only to have it never queried and leave the network some time later. User thrashing

occurs when a user's intent and the system's measure of intent, as represented by the interface

learning network, swings from one extreme to another. If we are truly modeling user intent,

we should desire to capture user thrashing. However, we also desire to avoid thrashing of the

system's measure of user intent so we can make accurate predictions of the user's intent. As

a concrete example, consider an aunt who is known to have drastic mood swings. You are

aware of this, and develop ways of observing her current behavior to �nd a promising way of

approaching her. You never vary your approach drastically. Rate of divergence is a measure

of how quickly a node leaves the interface learning network. We are concerned with ensuring

a node that was added to our network, but is not used often will exit the network quickly,

therefore allowing more useful nodes in the relevancy set. Class thrashing is the result of a

user who is diametrically opposed to his/her user class and therefore the network initially

does not represent a user well and consequently, must \learn back" a user's behavior. This

type of thrashing not only a�ects the user by making incorrect inferences, but a�ects the

user class the misplaced user is currently a member of. Rate of convergence is the speed

the \momentum" of past observed behavior is overcome by changes in current behavior

and therefore, how quickly the probability of a node will settle out to a particular value

within an epsilon and is important in conjunction with class thrashing. We desire to know

how fast a network will allow a user to overcome past behavior. For example, a user may

exhibit a particular behavior for a \long" time and then suddenly change behavior, perhaps

as the result of some new stimuli in the user's environment. A fast rate of convergence will

quickly allow the user model to overcome the past behavior and accurately model the current

behavior.

4 Conclusions

The prototype interface learning network used to date [5] needs to be expanded to capture

additional actions. Expansion of the number of actions GESIA will monitor allows a more

accurate model of the user's behavior to be maintained. Our current IIA uses a dynamic

\hand-coded" interface learning network. We determine a priori the actions we will monitor.

This is not unlike Maes' hand-coded situations [8]. This a priori determination limits the

number of user actions we must monitor in our system. While although most \hand-coded"

user models are static, ours allows the dynamic addition and deletion of nodes associated

with a particular Bayesian knowledge base. We limit the number of BKB associated nodes

allowed in the user's interface learning network at any one time. If the user loads a BKB that

is not represented in the current network, we add it to the network. If we have reached our

network size limitation (currently set at a hard limit of �ve BKB nodes), we delete the lowest
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probability node from the network. In this way, the most relevant (i.e., highest probability)

nodes are in our network at any point in time.

The intelligence of the interface can be enhanced if the interface is able to interpret

why it makes bad predictions. We propose a dynamic \meta-level" of inferencing, capable

of modifying the user's interface learning network topology as the user performs action in

PESKI. To realize this, we must be able to determine \real-time" what is happening with

the user. Most usability studies are done \o�-line" and have no immediate bearing on the

user model. The incorporation of temporal reasoning into this representation would allow

the interface to predict user traits based on the patterns [14].

The ability of this network to model user behavior can be expanded by designing the

interface to understand the user behavior. For example, if the interface measures patterns

of indicator swings the interface may begin to classify these patterns. The interface may

then be able to assign patterns to user traits, such as moods. The incorporation of temporal

reasoning into this representation would allow the interface to predict user traits based on

the patterns.

The intelligence of the interface can be enhanced if the interface is able to interpret why

it makes bad predictions. The metrics presented can be used to determine that a problem

exists in our ILN's representation of a user's intent and �nd ways to solve the problem.

The interface learning network provides GESIA with an e�ective knowledge representa-

tion for user, user class, and interface behavior. The use of Bayesian networks over rule-based

systems to accurately model the user better captures the uncertainty of user actions by using

sound semantics and a �rm mathematical basis. Initial tests show noticable savings in the

user's physical workload while accurately predicting users' behavior. For our architecture to

be truly helpful, we have designed it as a dynamic universal agent, capable of being used

with any user interface willing to \speak" the common language presented here. For any

IIA, we have presented several metrics that provide an insight into the performance of our

network. Furthermore, the momentum of learned behavior in one direction can be reversed

and changed to another direction of behavior quickly.
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